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1 Composition of the CHARM feature vector

Figure S1: Composition of the CHARM vector as proposed by [1].
The di↵erent feature groups are highlighted in the top row. Features ex-
tracted on higher image levels are denoted by a dagger (†), star (⇤) and a
sharp (#).

The CHARM (Compound Hierarchy of Algorithms Representing Mor-
phology) vector is composed of 1025 elements extracted from the original
image, as well as from transforms of the image. This large collection of
measurements fall into four main categories, which are further composed
of several measurement sets: high contrast features, polynomial decomposi-
tions, pixel statistics, and textures, all extracted from gray-scale images.
The high contrast features category contains information about the ele-
ments that compose the image, such as edges and shapes. The textures
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category contains some well-known texture descriptors such as the Haral-
ick [2] and the Tamura [3] texture features. The pixel statistics group is
composed of information about pixel values distribution over the image,
such as histograms with various numbers of bins and statistical moments.
Finally, the polynomial decompositions category is built by generating a
polynomial that approximates pixel values up to a given error such as the
Zernike or the Chebyshev polynomials, and whose coe�cients describe the
image. Some of these features are extracted from the original image as well
as from transforms and from compound transforms (transforms of trans-
forms) of the image. The Fourier transform, Wavelet transform, Chebyshev
transform and composition of these transforms are used to give additional
higher level interpretation of the image content, for instance, in the case of
the Fourier transform, by revealing the frequency composition of the image.
The construction of the CHARM vector is illustrated in Figure S1. A for-
mal definition of each of these elements along with appropriate references is
given in [1].

2 Integration in CellProfiler

The feature extraction step of CP-CHARM is carried out in CellProfiler
[4], as depicted in Figure S2. The 953 measurements required to build the
feature vector are extracted through a user-friendly “pipeline” composed of
di↵erent modules. This construction o↵ers greater modularity and flexibil-
ity: the user is able to easily tune the feature vector content, which would
not be possible using the original WND-CHARM implementation without
significant programming expertise. Here, the removal of existing modules,
the introduction of new ones or the modification of existing modules settings
in the pipeline is made easy through CellProfiler’s interface, as depicted in
Figure S2.

Most features extracted by our method require pixel-based computa-
tions, which can be computationally expensive for large-scale images. As
feature extraction is performed in CellProfiler, which allows for e�cient
batch processing, one way of dealing with such data is to tile them into
smaller chunks to be processed in batch mode. The final classification re-
sult for the large image can then be retrieved as the most represented class
among classification results from the tiles, or as a percentage of the tiles.

3 Study of validation methods

Using our Python implementation of WND-CHARM, which has been shown
to give similar results as the published C++ version [5], we performed re-
peated rounds of training and testing on WND-CHARM’s reference suite.
As choosing a di↵erent validation method than what was initially proposed
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Figure S2: CellProfiler user interface with an example pipeline com-
posed of several modules. Each module contains a description of its pa-
rameters, which can be modified through the interface. Modules can easily
be added to or removed from the pipeline.

in WND-CHARM had a direct impact on the measure of performance of the
algorithm, we investigated the e↵ect of changing WND-CHARM’s validation
method while keeping the rest of the algorithmic structure unchanged.

First, we gathered results using WND-CHARM’s original custom valida-
tion method, which we refer to as lone 4-fold cross-validation. Then, in the
same experimental conditions, we changed the validation method for 10-fold
cross-validation while keeping all other parts of the algorithm unaltered. The
results on WND-CHARM’s reference suite, presented in Table S1, show that
similar median classification accuracies are obtained with either validation
method. Using 10-fold cross-validation, we however observe much smaller
standard deviations, implying that classification results are more stable over
the di↵erent repetitions of the experiment. Considering N rounds of training
and testing, this can easily be explained from the fact that 10-fold cross-
validations results are subject to two steps of averaging. They correspond
to averages of N results, which are themselves obtained by averaging clas-
sification results over each of the possible combinations of 10 given folds.
Conversely, lone 4-fold cross-validation results are obtained by direct av-
eraging of N classification results for a particular 3

4 versus 1
4 partitions of

the data into training and testing sets. The outcome of this experiment al-
lows us to safely further compare results obtained with WND-CHARM and
CP-CHARM, at least regarding median classification accuracy, even though
their validation methods di↵er.
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Table S1: Comparison of validation methods using WND CHARM’s refer-
ence suite

Lone 4-fold cross-validation 10-fold cross-validation
Dataset Median Std Dev. Median Std Dev.
AT&T 0.97 0.02 0.97 6e-3
Brodatz 0.91 0.01 0.93 5e-3
CHO 0.93 0.02 0.94 1e-3
COIL-20 1.00 1e-3 0.99 3e-4
HeLa 0.87 0.09 0.85 6e-3
Pollen 0.95 0.02 0.96 4e-3
Yale 0.83 0.07 0.79 0.03

Note: 1.0 corresponds to 100% correct classification.

4 Supplementary Figures

Figure S3: Misclassification rates per non-overlapping feature “groups”.

Figure S4: Misclassification rates per non-overlapping feature “levels”.

Figure S5: Feature group composition and weights in the top 15% subset
retained by WND-CHARMs feature selection method.

Figure S6: Tanimoto distance matrices measuring the similarity of the top
features subsets content across 100 classification runs of the original
WND-CHARM algorithm on the reference datasets.

Figure S7: Misclassification rates over 10 runs of training and testing using
the CHARM-like feature vector and classifying with methods allowing
for non-linearites or not.

Figure S8: Misclassification rates over 10 runs of training and testing using
the CHARM-like feature vector and di↵erent classifiers.

4



References

[1] Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg,
I.G.: Wnd-charm: Multi-purpose image classification using compound
image transforms. Pattern recognition letters 29(11), 1684–1693 (2008)

[2] Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for im-
age classification. IEEE Transactions on Systems, Man and Cybernetics
(6), 610–621 (1973)

[3] Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to
visual perception. IEEE Transactions on Systems, Man and Cybernetics
8(6), 460–473 (1978)

[4] Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H.,
Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Mo↵at, J.,
Golland, P., Sabatini, D.M.: Cellprofiler: image analysis software for
identifying and quantifying cell phenotypes. Genome biology 7(10), 100
(2006)

[5] Uhlmann, V.: A segmentation-free image classifier for biological appli-
cations. Master’s thesis, Swiss Federal Institute of Technology, Lausanne
(EPFL) (2012)

5



(a)

(b)

(c)

Figure S3: Misclassification rates per non-overlapping feature
“groups”. To be continued on next page.
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(d)

(e)

(f)

Figure S3: Misclassification rates per non-overlapping feature
“groups”. To be continued on next page.
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(g)

Figure S3: Misclassification rates per non-overlapping feature
“groups”. The label under each bar corresponds to the group that has
been removed from the CHARM vector for classification using WND (each
element listed in Figure S1 belongs to one of the groups). The rightmost
box corresponds to the reference classification accuracy distribution using
the whole feature set. Results range from 0 (0%) to 1 (100%) and were ob-
tained over 10 runs of training and testing using 10-fold cross-validation. (a)
AT&T, (b) Brodatz, (c) CHO, (d) COIL-20, (e) HeLa, (f) Pollen, (g) Yale.
We note that COIL-20 poses a significantly simpler classification problem
compared to other datasets; there is very little variation in the misclassi-
fication rates when dropping any single group of features, except for the
Textures group.
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(a) (b)

(c) (d)

(e) (f)

Figure S4: Misclassification rates per non-overlapping feature “lev-
els”. To be continued on next page.
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(g)

Figure S4: Misclassification rates per non-overlapping feature “lev-
els”. The label under each bar corresponds to the level that has been re-
moved from the CHARM vector for classification using WND (v1: features
extracted from the original image only, v2: features extracted from trans-
forms of the image, v3: features extracted from transforms of transforms of
the image). The rightmost box corresponds to the reference classification
accuracy distribution using the whole feature set. All results range from 0
(0%) to 1 (100%) and were obtained over 10 runs of training and testing us-
ing 10-fold cross-validation. (a) AT&T, (b) Brodatz, (c) CHO, (d) COIL-20,
(e) HeLa, (f) Pollen, (g) Yale.

10



(a)

(b)

(c)

Figure S5: Feature group composition and weights in the top 15%
subset retained by WND-CHARMs feature selection method. To
be continued on next page.
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(d)

(e)

(f)

Figure S5: Feature group composition and weights in the top 15%
subset retained by WND-CHARMs feature selection method. To
be continued on next page.
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(g)

Figure S5: Feature group composition and weights in the top 15%
subset retained by WND-CHARMs feature selection method. High
weights indicate features identified as having a large discriminative power by
WND-CHARMs weighting scheme. (a) AT&T, (b) Brodatz, (c) CHO, (d)
COIL-20, (e) HeLa, (f) Pollen, (g) Yale. This experiment highlights groups
that are important for classification (as they get strong weights), while Fig-
ure S3 shows misclassification rates when datasets are being classified using
a feature vector version where one particular group (the one labeled below
each boxplot) has been removed from the feature vector. One would expect
a group with strong weights in the above plots to significantly a↵ect mis-
classification rate when removed (which could be observed in Figure S3). In
some cases, the removal of feature groups containing strong weights indeed
impacts classification accuracy (e.g., the Textures group in (e), as seen in
Figure S3e). In some other situations, however, feature groups collecting
strong weights do not seem to play an important role in the final classifica-
tion result (e.g., the Radon group in (f), as seen in Figure S3f).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure S6: Tanimoto distance matrices measuring the similarity of
the top features subsets content across 100 classification runs of
the original WND-CHARM algorithm on the reference datasets.
The Tanimoto distance is computed for every pairs of subsets. Since our
data covered 100 runs of classification, results are summarized in 100⇥ 100
pixels matrices. There, black corresponds to a Tanimoto distance of 0 and
white to 1. A perfectly stable feature selection scheme would yield an all-
white matrix as a value of one indicates perfectly similar subsets. (a) AT&T,
(b) Brodatz, (c) CHO, (d) COIL-20, (e) HeLa, (f) Pollen, (g) Yale.
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(a)

(b)

Figure S7: Misclassification rates over 10 runs of training and test-
ing using the CHARM-like feature vector and classifying with
methods allowing for non-linearites or not. To be continued on next
page.
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(c)

(d)

Figure S7: Misclassification rates over 10 runs of training and test-
ing using the CHARM-like feature vector and classifying with
methods allowing for non-linearites or not. From left to right: LDA,
PCA-LDA, random forests, linear SVM and radial basis functions SVM,
using 10-fold cross-validation. LDA, PCA-LDA and linear SVM are purely
linear methods, while random forests and radial basis functions SVM al-
low for nonlinearities. Results range from 0 (0%) to 1 (100%). (a) CHO,
(b) HeLa, (c) Pollen and (d) Yale reference datasets. Results suggest that
linearly separability is a reasonable assumption in the CP-CHARM feature
space for WND-CHARMs reference suite datasets, as allowing for nonlin-
earities do not improve classification performance.
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(a)

(b)

Figure S8: Misclassification rates over 10 runs of training and test-
ing using the CHARM-like feature vector and di↵erent classifiers.
To be continued on next page.
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(c)

(d)

Figure S8: Misclassification rates over 10 runs of training and test-
ing using the CHARM-like feature vector and di↵erent classifiers.
To be continued on next page.
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(e)

Figure S8: Misclassification rates over 10 runs of training and test-
ing using the CHARM-like feature vector and di↵erent classifiers.
From left to right: LDA, kNN, linear SVM, radial basis functions SVM, pe-
nalized LDA, random forests and PCA-LDA, using 10-fold cross-validation.
Results range from 0 (0%) to 1 (100%). (a) CHO, (b) COIL-20, (c) HeLa,
(d) Pollen, (e) Yale.
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